
Holonym: Private Proofs on Identity for

Blockchains and Beyond

Nanak Nihal Khalsa
nanak@holonym.id

Caleb Tuttle
caleb@holonym.id

Kushal Kahar
kushal@holonym.id

Shady El Damaty
shady@opscientia.com

November 19, 2022

Motivation

Holonym addresses the problem of private identity on public blockchains.
Sensitive data is often needed by web applications but cannot be provided to
decentralized applications (dApps) whose underlying databases are publicly
visible ledgers. Trusted custodians are not an ideal solution because they are
privvy to a user’s historical activity and proxy measures that can be used to
determine identity or learn their wallet address. Holonym uses ZK-SNARKS
for private identity on blockchains. This is done to enable novel uses such
as private KYC-analogs, strong Sybil resistance, on-chain democracies, and
noncustodial wallet recovery.

Introduction

The Web Needs Default Privacy Settings Internet users today have
a choice between trusting either centralized servers or decentralized proto-
cols with their data. Centralized servers are private but these custodians
collect data that can be used to identify and track nonconsenting users.
Centralized servers also have a track record of security breaches, and this
trend is expected to continue as new exploits are found. Decentralized sys-
tems are more secure to tampering and possess remarkable transparency for
how data is stored and used. However, the benefit of transparency comes
at the cost of user privacy. Holonym was developed to address the problem
of private identity on public blockchains, allowing users to reap the ben-
efits of “trust-less” decentralized web architecture while retaining control
over their sensitive data. Holonym provides a framework for default privacy
settings on the internet by placing user consent, transparency, and decen-
tralization as first principles. Holonym uses Zero Knowledge Succinct Non-

1

mailto:nanak@holonym.id
mailto:caleb@holonym.id
mailto:kushal@holonym.id
mailto:shady@opsci.io

interactive Arguments of Knowledge (ZK-SNARKs) for private identity on
public blockchains. This synergy of privacy and public, composable ecosys-
tems allows novel uses of portable cloaked identities: e.g., private credential
proofs, strong Sybil resistance, on-chain democracies, and noncustodial wal-
let recovery.

Zero Knowledge Proofs Zero knowledge proofs (ZKPs) are innovations
in cryptography from the 1980s which have become practical only recently
[13]. ZKPs allow the proving of a statement without revealing any infor-
mation other than the statement. ZKPs also enable the compression of an
arbitrary computations into a small, often constant-sized proof of computa-
tional integrity. These properties of privacy and succinctness have led to uses
in privacy and scalability. Holonym utilizes the privacy-preserving features
of ZKPs, particularly ZK-SNARKs, in order to prove facts of an identity,
such as being a US resident or a unique person, without revealing anything
else about ones identity. This allows identity verification in contexts where
you cannot trust the verifier to keep your data secure.

Definitions

Holonym Holonym is defined as a whole which is comprised of parts.
We refer to a holistic private identity as a Holo, which is comprised of
individual identifiers called nyms. The idea of a Holo to privately link a set
of nyms was inspired by Nick Szabo, the first to introduce smart contracts
and virtual personae in the late 90s [10]. We define a Holo as an individual’s
set of commitments that reference a variety of nyms, such as a name, social
accounts, or social security number. Nyms may reveal various degrees of
identifying information about a user. These are bundled together with the
user’s consent to produce proofs that reveal objective facts about a user, such
as residency, whether they are an adult, or have voted in a digital election.
Together, a full set of commitments produced from valid credentials provide
a holistic picture of an individual that can be used to interact with web
applications utilizing privacy as a default setting.

Rigorous Sybil Resistance Sybil resistance is a general term frequently
applied to any method of preventing abuse of digital systems by automated
programs (e.g., bots). The key to achieving Sybil resistance is the ability
to distinguish activity that belong to authentic users from automated pro-
grams impersonating real users. There are many methods for establishing
Sybil resistance, each with their strengths and weaknesses. For example,
CAPTCHAs are useful for preventing abusive behavior on web platforms
but they are useless for protecting blockchain consensus mechanisms from

2

adversarial bot attacks. We define a strong form of Sybil resistance in re-
lation to a reward function, RA(n), and cost function, CA(n), of an action,
A, done n ∈ Z∗ times (note: Z∗ denotes non-negative integers). An action
A has Sybil resistance if and only if:

sgn(RA(n)− CA(n)) =

{
1, if n = 1

−1, otherwise

I.e., an action is Sybil resistant if and only if its reward outweighs its cost for
the first time only; doing the action any higher number of times, the cumu-
lative cost will outweigh the cumulative reward. Bot attacks are character-
ized by a high number of repeated requests to a web service or application.
These repeated requests are often intended to artificially inflate content en-
gagement with fake votes, likes, comments, or other common types of web
activity. Here we define adequate Sybil resistance as a high cost to satisfy-
ing any requests beyond the first. Using this definition as a benchmark, it
becomes clear that many types of bot prevention mechanisms which adver-
tise Sybil resistance do not actually meet this definition because they are no
more difficult to do multiple times; they rather simply add user friction to
an action, a friction that does not increase with n. A common example are
mechanisms that require users to link multiple web accounts. The thinking
behind this strategy is that bots are less likely to create multiple accounts
to use the platform. However, this is also gameable with composable Sybil
attacks by bots on each of the web accounts required to be linked. The cost
for creating the first account does not scale with repetition. A real-world
example of a highly resistant mechanism, is one that is difficult to repeat
more than once such as a passport registration. Currently, there are no
existing digital solutions that approach the level of Sybil resistance afforded
by traditional forms of identity verification. One could argue that this def-
inition is exclusionary, which is correct. However, this definition may be
found helpful to delineate a robust level of security against bot attacks.

Use-Cases

Private Proofs on Identity Verification of identity and credential vali-
dation is often performed using more information than is required to satisfy
the needs of the verifier (PII). For example, verifiers may only need to know
whether an individual has a legitimate proof of residency, is above a cer-
tain age, has a registered legal entity, etc. Current verification flows utilize
a credential rich with sensitive information that reveal more information
than is required, such as home address, personal finances, or social security
number. Sensitive information is often leaked in data breaches, and cannot
even legally be collected by certain entities, despite its utility to the entity.
Therefore, privacy-preserving proofs about identity can not only prevent PII

3

leakage and bolster user safety, but also enable use-cases of PII that does
not reveal the actual PII.

Sybil resistance Voting protocols (such as blockchain consensus, DAO
voting, & quadratic funding) require Sybil resistance [12]. Web3 Sybil
attacks can only be resisted currently – they cannot be completely prevented
[12]. Holonym changes the mechanisms of Sybil resistance to make Sybil
attacks nearly impossible: it enables the same Sybil resistance mechanisms
that the governments use for national elections and for multi-trillion-dollar
social security dispersal. This would be a substantial change to web3 Sybil
resistance, which can often be attacked for as only $10 [7]. Furthermore,
current Sybil-resistance methods require significant effort on the user’s part,
which can be mitigated by using automated zero-knowledge proofs instead of
social attestations and verification parties that are currently employed. With
easier and more rigorous Sybil resistance, on-chain democracies, mechanisms
for universal basic income, and a wide array of secure ”trust-less” business
transactions become possible. The uses cases can go beyond on-chain proofs
to reduce spam on email, games, and social networks.

Holonym produces proofs on data that need verification, without re-
vealing sensitive information. This may include proofs of age or proofs of
residency, such as ”User 0x1234 is an adult resident of the US and has voted
in three elections”. Proof of residency is accomplished by a novel, simple
cryptographic accumulator scheme that represents each country as a prime
number for simple set membership in country accumulators.

Anonymous Reputation and History Nullifier schemes enable record-
ing actions across anonymous users. An immutable ledger like a blockchain
may store commitments to actions that can be used to prove those actions
were or were not performed. For example, without revealing ones identity,
one can prove that one has returned 3 loans or has not yet submitted $3,000
in transactions.

Such a scheme can be useful in cases such as the Bank Secrecy Act[4, 5]
(BSA). The BSA does not require collecting customer identity information
for transactions under a certain threshold. However, one person can easily
break a large transaction into small pieces to avoid requirements for ”Know-
Your-Customer” (KYC). Governments keen to curtail money laundering and
financing of illicit activities have made this practice illegal but practical en-
forcement of this law remains to be demonstrated. ZK identity can prevent
such structured transactions by representing unspent transaction limits in
a UTXO-like model within two Merkle trees, one sparse. The Merkle tree
architecture is described in further detail in the structured transactions ar-
chitecture section. This design pattern may enable non-web3 financial insti-
tutions to detect structured transactions without in-depth customer iden-

4

tification, combating crime which is currently expensive and impossible to
prevent completely.

Non-custodial Wallet Recovery A key feature of the decentralized web
is the self-custody of cryptographic keys by individual users. Instead of
centralized web services that host the keys used to identify individuals and
authorize transactions associated with identities, users keep their keys local
on their own hardware. Cryptoassets are often permanently lost due to lost
private keys. Recovery solutions utilizing technology such Apple Keychain
or AWS servers have been proposed but at the expense of nominating a
centralized authority to safe-guard user identities, effectively making them
an owner of stored user data. Social recovery has been proposed [14] as
a more decentralized solution, however this still requires trust and delays
lasting a week for a single transaction [14]. Holonym enables “antisocial
recovery”, where keys can be recovered without trusting friends & without
delaying regular transactions with a long wait period. It accomplishes this
via proofs that one is the rightful owner of a wallet, which don’t require a
private key but rather linked identities, or nyms. A smart contract wallet can
use this as a recovery mechanism, or a decentralized threshold encryption
network such as the Lit protocol [9] can store the private key, recovering
it after a private proof of identity. This form of wallet recovery uses an
architecture entirely different than the Merkle tree-based mechanism used
elsewhere within Holonym, and more information on this architecture is in
the wallet recovery architecture section.

Existing Approaches to Identity

Multiple approaches for identity and trust on the decentralized web, or web3,
exist with unique capabilities and shortcomings. Some with radically differ-
ent approaches include:

• Verifiable Credentials, e.g. Verite and Disco

• Social attestation networks, e.g. Proof of Humanity & BrightID

• On-chain resume / badge services, e.g. Rabbit Hole & Project Galaxy

• Centralized federated identity, e.g. Magic Link & traditional SSO

• Enterprise DID and SSI services, e.g. Evernym, BloomID, & Mattr

• Traditional KYC services, e.g. Blockpass & Stripe

Verifiable Credentials Verifiable Credentials (VCs) are a digital schema
for user-owned identities. A standard for VCs has emerged through the

5

World Wide Web Consortium (W3C), which seeks to bring interoperabil-
ity to self-sovereign identity systems. [8]. VCs are given in JSON format
which is practically incompatible with R1CS used in ZK-SNARKs and with
EVM blockchains; the variable length data and unserialized format of raw
JSON do not lend themselves to such environments. Nevertheless, VCs have
been a significant help in bringing interoperability to non-ZK, off-chain, self-
sovereign identity protocols.

Social attestation networks such as Proof of Humanity and BrightID pro-
vide a handful benefits such as a Universal Basic Income token and some
level of Sybil resistance, albeit nonconforming to the definition we provided
of robust Sybil resistance. This level of Sybil resistance is suitable for
lower-reward use cases, but game-theoretic concerns prevent higher-reward
use cases (an attack can cost $10 [7]).

On-chain resume / badge services provide pseudonymous credentials.
They effectively show accomplishments which usually to skill- and experience-
related uses, rather than security- and identity-related uses. There is work
by Sismo to add anonymity to these badges, enabling security- and identity
use.

Centralized Federated Identity achieves a unified identity across apps,
but it’s owned by identity providers instead of users. Google SSOs are
centralized. These have been well-adopted due to making verification for
users and developers much easier, by routing requests efficiently through
a centralized provider. They often involve JWTs, which Holonym verifies
on-chain with ZK circuits to enable proof of Web2 accounts.

Enterprise DID and SSI services such as Evernym, BloomID, & Mattr
provide some benefits of DIDs for organizations. They are often focused
on credential storage and verification, reducing expenses and increasing ef-
ficiency of organizations through user-owned identities.

Traditional KYC services provide deep checks into not just identity but
also legal status. On-chain KYC is a more significant privacy risk than Web2
KYC; after verification in Web2, a user’s data on one website is no longer
private, yet after verification in web3, a user’s activity everywhere on public
blockchains is no longer private. Therefore, we introduce steps so that no
identity verifier can learn a user’s wallet address.

Holonym’s Architecture

1 Identity Proofs & Sybil Resistance

The primary mechanism of Holonym’s ID verification that enables Sybil
resistance is an architecture that could be described as “ZCash for IDs”.
KYC and Sybil resistance require relatively trivial engineering solutions if
you compromise privacy, by having some centralized registry that maps

6

government IDs to wallet addresses. To add privacy on top of this, a global
Merkle tree is created with commitments to everyone’s credentials. Proofs of
properties of leaves serve as proofs of facts about identities. Such proofs use
a nullifier paradigm similar to ZCash [15] and Tornado Cash [11], adapted
for IDs instead of money.

Figure 1: The steps of identity verification and anonymization. The
anonymity set of Merkle leaves is referred to in this graphic as the pri-
vacy pool. First, identity verification is done by an issuer, who then gives
a signed credential to the user. Next, to prevent the issuer from learning
anything about the user beyond the fact they exist and just registered, the
user makes a commitment of their signed credentials, which Holonym then
submits to the Merkle tree. Finally, the user is free to prove any statement
about their Merkle tree element.

ZK-friendly Credential Format Credentials must be properly format-
ted to enable decentralized, private attestation and proving. JSON format-
ting such as in W3C DIDs is (practically) incompatible with R1CS which
requires fixed-length inputs. For optimal performance with common imple-
mentations of the Poseidon hash, the credential format we propose consists
solely of field elements less than:

1 2188824287183927522224640574525727508854836440041603434369

2 8204186575808495617

There are two mandatory fields and any number of optional fields. The
mandatory fields are: issuer, the credential issuer’s Ethereum address; &
secret, a value that can be used as a nullifier and pepper. One example of a
credential format is:

7

index name description

0 issuer Ethereum address of the credential issuer

1 country prime representation of country

2 subdivision numeric representation of state/province

3 birthdate birthdate, as days since 1900

4 iat credential issuance date, as days since 1900

5 secret secret that acts as both a nullifier and pepper

Table 1: The credential format used in the Holonym beta version. This
is one possible format of credentials, containing both mandatory fields of
issuer and secret.

Credentials are self-custodied in a browser extension or app for privacy.
A hash of the credentials (with a pepper) is put on-chain as a commitment,
inserted within a global Merkle tree of credential commitments.

Checking and modifying commitments before submission Creden-
tial commitments must be determined valid before being added to the global
Merkle tree. The issuer is an entity that signs valid credentials. Valid creden-
tials can come from any identity authority or attestation service. Holonym
prevents the issuer from learning anything about the user beyond the re-
ceived credential. To accomplish this, the commitment has a secret that the
issuer does not know. The checking and modifying of the commitment is an
8-step process:

1. Issuer returns verified credentials, generates a commitment (the hash
of the credentials), and signs the commitment. For Sybil resistance,
issuer can also store the credentials to check that the same user doesn’t
try to register twice.

2. User generates a random value that the issuer doesn’t know and re-
places secret with it

3. User commits to the credentials with the new secret

4. User generates ZK-SNARK, arguing that the new commitment and old
commitment both come from the same preimage but with a different
secret. This ZK-SNARK will have the issuer address (a part of the
preimage) as a public input.

5. Holonym smart contract verifies ZK-SNARK

6. Holonym smart contract checks old commitment’s signature against
the issuer address provided as public input in the ZK-SNARK, to
assert credentials came from the provided issuer

8

7. Holonym smart contract checks that old commitment hasn’t been used
before, to prevent double-spend attacks where an attacker can make
multiple new commitments from one signed commitment. This is nec-
essary (but not sufficient) to prevent Sybil attacks.

8. Holonym smart contract adds new commitment (which is now known
to be valid) to the Merkle tree.

Proofs of attributes Once the credential commits are added to the on-
chain Merkle tree, the user can prove arbitrary facts about them from any
wallet address, as long as they know the secret. This way, users can spin up
ephemeral addresses and prove identity from them, so they can act from
many verified addresses with no linkable trace between them. This
abstracts personhood away from an address, breaking the continuity of ones
actions. Ones actions are instead linked by ones secret which nobody else
knows. A user can reveal the continuity of their actions only if they know
their secret, if they act from different wallet addresses. However, this is
optional; nothing prevents a user from doing all actions from one wallet
address and this will likely be the predominant way users create proofs as
it is currently the most convenient.

Proofs of attributes happen via ZK-SNARK that includes a set of cre-
dentials. The credential hash is shown to be included in the Merkle tree,
and the individual credentials are shown to have certain properties such as
“country == 2”, where 2 represents USA.

Country accumulators Countries are represented as prime numbers for
efficient whitelisting. To set an ”allow-list” of countries, an acculumator
is used as public input. The accumulator is the mathematical product of
all allowed countries’ code, represented as a prime number for each country.
Then, “user is from a valid country” simply becomes country % accumulator
== 0.

Nullifiers Secrets can act as nullifiers, indicating a user has spent a cre-
dential. This is useful to prevent Sybil and double-spend attacks. Since
credential issuance step is done by a “boring” centralized entity which can
log who has registered, it is trivial to prevent somebody from registering
twice. Since this issuer can choose to only give each user one set of creden-
tials with one secret, there is a sort of centralized Sybil resistance here pre-
venting users from registering twice. This privacy level is not ideal, which is
why the process detailed in the Checking and modifying commitments
before submission section allows the user to change the secret and use the
new secret for Sybil resistance. This new secret is unknown to the issuer,
but required the issuer’s permission to create. In summary, the centralized

9

issuer can check it hasn’t verified a user before allowing them to make a
secret. But the new secret won’t be known to the issuer.

The secret can then be used to create proofs such as unique personhood.
For example, a hash of the secret can be published along with a proof the
resulting digest is correct. Thus, if a user tries to do an action twice from
different addresses, it will reveal they are using the same secret! This allows
Sybil resistance by tracking which secret hashes are spent. This construction
becomes powerful when working with ”salted” secret hashes. Any action has
a unique salt and to do the action, the user must publish the hash of their
secret with the action’s salt. This makes a particular action Sybil resistant.

Prevention of Tax Evasion, Money Laundering, Drug & Terrorism
Financing, and Miscellaneous Crime Having one secret per person en-
ables what was not possible before in the prevention of unstructured trans-
actions, to our knowledge. Most mechanisms of fighting money laundering
are invasive to privacy and are usually only employed for transactions above
$3000[4, 5]. Criminals often split large transactions into smaller transactions
to bypass identity checks. However, using secrets as nullifiers can prevent
such splitting while preserving user privacy.

Doing so can be accomplished with a version of the UTXO model. In-
stead of unspent transaction outputs, this model employs Merkle tree rep-
resenting unspent remaining balances (URBs). When money is first spent,
a hash of (secret, date, new balance) would be added to a sparse Merkle tree
of spent remaining balances (SRBs). Note that this is an incomplete outline
of how such a system can be built on Holonym; a full description of it may
necessitate another whitepaper and can be left to the reader’s imagination
(or implementation!).

A sparse Merkle tree also could be used for a ”deny-lists”, which can pre-
vent criminals or sanctioned entities from interacting with smart contracts
based on their government IDs. However, this is a form of censorship and
should be avoided unless strictly necessary.

2 Proving ownership of Web2 accounts

Please note that the features mentioned in this section are not production-
ready at the time of writing and may change slightly in the process of becom-
ing production-ready.

Holonym can also allow the proof of Web2 credentials. This happens via
verification of JSON Web Tokens (JWTs) within a SNARK.

Holonym works by forwarding web tokens to smart contracts which verify
their data is truly signed by the OpenID provider, e.g. Google for a gmail
account. Single sign-on (SSO) services (login with Google et al. buttons)

10

return JSON web tokens (JWTs) with RSA or HMAC signatures. RSA
signatures used by Google, Facebook, ORCID, and others have the benefit
of being verifiable by anyone. ECDSA signatures could also work and be
far easier to implement on EVM chains but unfortunately, few servers sign
JWTs with elliptic curve signatures.

Figure 2: JWT verification process. The smart contract verifies the JWT’s
signature and therefore verifies its contents. The smart contract retrieves
the certain data from the JWT’s proof.

Asymmetric RSA Signatures

RSA Signatures are verified by sending the JWTs to the Verifier smart
contracts, which use the 0x05 modular exponentiation precompile to ver-
ify the signature. Note that the actual JWT is not signed. Rather, the
digest of its header and payload, separated by a ’.’ after being converted
to base64, is signed. Practically speaking, the digest of a JWT is signed;
consequently, signatures can be verified on-chain only knowing the digest of
the JWT, which does not reveal the actual JWT. The digest is checked via
a ZK-SNARK.

Verification of RSA signature
Below is the verification function for signature s, public key (e,n), kec-

cak256 hash function H, and padding function P, where m is the message,
decoded from base64 format.

se(mod n) == H(P ((m)))

Signature verification is similar to how all blockchain transactions work;
transactions must be signed by the party transacting and verified by the

11

blockchain. Here, instead of solely checking that a transaction is signed by
the sender, the contract also checks the credentials are signed by Google,
Facebook, and etc.

Symmetric HMAC Signatures

HMAC signatures, such as those currently returned by Twitter, are not
signed by an asymmetric key. They are not as straightforward to verify
on-chain, since there is no public key anybody can use to verify a signature.
Instead, the verifying key is identical to the signing key – anyone who has
the key can forge signatures! This is incompatible with public blockchains as
bad actors can forge signatures with publicly known signing keys. Rather,
symmetric keys are meant to be known only by the app (e.g., website with
Twitter sign-in) and the provider (e.g. Twitter). As a result, there is an
added layer of centralization where Holo must reissue these tokens from a
central server with an asymmetric signature. We mitigate this centralization
risk by using a trusted execution environment.

Prevention of Front-running

Once a blockchain-compatible signature for credentials has been obtained,
further steps are needed to proceed. The steps above by themselves would
allow impersonation via front-running. Verifying a JWT on-chain leaves it
in the mempool for anyone to steal and verify first by paying more gas.
Holonym initially resolved this security concern by verifying the JWT in
two transactions. The two transactions were a commit-reveal pattern:

1. XOR digest of the JWT with owner’s address, and submit the hash of
that result

2. Wait for the current block to be finalized

3. Submit the plain-text JWT for the smart contract to check that it was
committed in a previous block.

When 3. happens, the smart contract checks for a previous commitment; it
XORs the hashed JWT with the sender’s public key, then hashes the result.
If a result exists and was submitted in an earlier block, it may check the
result was not only known but also linked with the user’s public key. In
this block, the JWT remained unknown to all but the user because it was
hashed and subject to XOR before it was shared. After these steps confirm
a JWT belongs to the submitter of the transaction, its signature can then
be verified as mentioned previously.

Now, Holonym uses a ZK-SNARK to do the above in a single transaction
comprised of:

12

• signature of the JWT, which is recovered on-chain to find the digest
of the JWT

• proof that the preimage of the digest of the JWT does indeed represent
a valid JWT

– the address of the sender as part of the proof

This way, the proof is not malleable regarding the address; nobody can claim
it as their own because the address is part of the proof.

Trust-less Wallet Recovery

There are two key barriers to wallet recovery: trust and ease of setup. A
trusted custodian is against the ethos of web3. And “social recovery” doesn’t
fully solve this problem – it delegates trust to people rather than institutions,
and requires time to setup or make transactions.

Rather, wallets can be access-gated by a zero knowledge proofs of iden-
tity. Government ID, login with Google or Apple, or MacBook fingerprint
reader should enable recovery of a wallet. For example, a 2/4 threshold
for these authentication methods could be used where a login with Google
and biometric scan can recover your account. Thus, there is no one custo-
dian that can single-handedly steal funds. Setup via clicking “sign-in with
Google/Apple/Microsoft” or “enter your legal name” , is arguably a simple
UX for wallet-creation, enabling both ease of use and non-custodiality.

For the setup process, an encrypted version of the UUID, such as the
JWT sub claim, is stored on-chain. For privacy, the encryption process must
be such that an Google, Apple, and other identity providers cannot tell which
UUID produced the encrypted UUID - doing so would enable them to know
who owns which address. As long as the user can prove a verified identity
with the same UUID, they can recover the wallet. ZK-SNARKs are used for
private proofs of JWTs. For non-smart-contract wallets, the Lit protocol
can share the secret after identity has been proven.

13

Figure 3: Wallet recovery using a MacBook fingerprint scanner, Google
account, Twitter account, and passport. Access to keys granted by a proof
via Holo (middle), and keys stored on Lit protocol (top).

Conclusion

Holonym is an identity bridge and mixer that privately cloaks off-chain cre-
dentials, putting them on-chain for portable use by any web application. An
array of new use cases are unlocked by combining the composability and re-
liability of public ledgers with the privacy of zero-knowledge. These unlocks
include on-chain identity verification, rigorous Sybil resistance, digital crime
prevention, and noncustodial wallet recovery. While they rely on compos-
able ledgers, they do not just benefit the web3 ecosystem. A key outcome
of the architecture employed by Holonym is the elucidation of novel, prac-
tical utility of blockchains to benefit the internet at large, outside of web3
bubbles, by reducing crime, Sybil attacks, and data leaks.

References

[1] Chainalysis. (2022, February). The 2022 Crypto Crime Report. Chainal-
ysis. Retrieved March 27, 2022, from https://go.chainalysis.com/

rs/503-FAP-074/images/Crypto-Crime-Report-2022.pdf

[2] Elizabeth Licorish. (2021, November). Chainlink Announces Its
Total Value Secured (TVS) Is Now Over $75 Billion Chainlink To-
day. Retrieved May 13, 2022, from https://chainlinktoday.com/

chainlink-announces-its-total-value-secured-tvs-is-now-over-75-billion/

14

https://go.chainalysis.com/rs/503-FAP-074/images/Crypto-Crime-Report-2022.pdf
https://go.chainalysis.com/rs/503-FAP-074/images/Crypto-Crime-Report-2022.pdf
https://chainlinktoday.com/chainlink-announces-its-total-value-secured-tvs-is-now-over-75-billion/
https://chainlinktoday.com/chainlink-announces-its-total-value-secured-tvs-is-now-over-75-billion/

[3] @rchen8. (2022, March 27). Dune Analytics. OpenSea. Retrieved March
27, 2022, from https://dune.xyz/rchen8/opensea

[4] Bank Secrecy Act. 31 USC § 5311. Retrieved Oct 19, 2022, from https:

//www.govinfo.gov/content/pkg/USCODE-2012-title31/pdf/

USCODE-2012-title31-subtitleIV-chap53-subchapII-sec5311.pdf

[5] Customer identification program requirements for banks. 31 CFR §
1020.220. Retrieved Oct 19, 2022, from https://www.law.cornell.

edu/cfr/text/31/1020.220

[6] OpenSea. (2022, January 27). OpenSea Tweet. Twitter. Retrieved
March 27, 2022, from https://twitter.com/opensea/status/

1486843201352716289

[7] @RoboTeddy. (2021, June). Proof of humanity: The cost of at-
tack. HackMD. Retrieved March 27, 2022, from https://hackmd.io/

@RoboTeddy/SkFEYwptd

[8] W3C. (2022, March). Verifiable Credentials Data Model v1.1 . W3C. Re-
trieved May 13, 2022, from https://www.w3.org/TR/vc-data-model/

[9] Lit Protocol. (2021). Automate & Free the Web. Lit Protocol. Retrieved
October 19, 2022, from https://litprotocol.com

[10] Nick Szabo. (1995). Smart Contracts Glossary. Nakamoto Institute.
Retrieved June 29, 2022, from https://nakamotoinstitute.org/

smart-contracts-glossary

[11] John R. Douceur. (2019). Tornado Cash Privacy Solution Version
1.4. Tornado. Retrieved June 29, 2022, from https://tornado.cash/

Tornado.cash_whitepaper_v1.4.pdf

[12] John R. Douceur. (2002). The Sybil Attack. Nakamoto Institute. In:
Peer-to-Peer Systems. Ed. by Peter Druschel, Frans Kaashoek, and
Antony Rowstron. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002,
pp. 251–260

[13] Goldwasser, S., Micali, S., & Rackoff, C. (1985). The knowledge com-
plexity of interactive proof-systems. In Providing Sound Foundations for
Cryptography: On the Work of Shafi Goldwasser and Silvio Micali (pp.
203-225).

[14] Vitalik Buterin. (2021). Why we need wide adoption of social recovery
wallets. Vitalik Buterin’s Website. Retrieved June 29, 2022, from https:

//vitalik.ca/general/2021/01/11/recovery.html

15

https://dune.xyz/rchen8/opensea
https://www.govinfo.gov/content/pkg/USCODE-2012-title31/pdf/USCODE-2012-title31-subtitleIV-chap53-subchapII-sec5311.pdf
https://www.govinfo.gov/content/pkg/USCODE-2012-title31/pdf/USCODE-2012-title31-subtitleIV-chap53-subchapII-sec5311.pdf
https://www.govinfo.gov/content/pkg/USCODE-2012-title31/pdf/USCODE-2012-title31-subtitleIV-chap53-subchapII-sec5311.pdf
 https://www.law.cornell.edu/cfr/text/31/1020.220
 https://www.law.cornell.edu/cfr/text/31/1020.220
https://twitter.com/opensea/status/1486843201352716289
https://twitter.com/opensea/status/1486843201352716289
https://hackmd.io/@RoboTeddy/SkFEYwptd
https://hackmd.io/@RoboTeddy/SkFEYwptd
https://www.w3.org/TR/vc-data-model/
https://litprotocol.com
https://nakamotoinstitute.org/smart-contracts-glossary
https://nakamotoinstitute.org/smart-contracts-glossary
https://tornado.cash/Tornado.cash_whitepaper_v1.4.pdf
https://tornado.cash/Tornado.cash_whitepaper_v1.4.pdf
https://vitalik.ca/general/2021/01/11/recovery.html
https://vitalik.ca/general/2021/01/11/recovery.html

[15] Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green,
Ian Miers, Eran Tromer, Madars Virza. (2014). Zerocash: Decentral-
ized Anonymous Payments from Bitcoin. Proceedings of the IEEE Sym-
posium on Security & Privacy (Oakland) 2014, 459-474, IEEE, 2014.
Retrieved September 21, 2022, from http://zerocash-project.org/

media/pdf/zerocash-oakland2014.pdf

16

http://zerocash-project.org/media/pdf/zerocash-oakland2014.pdf
http://zerocash-project.org/media/pdf/zerocash-oakland2014.pdf

	Identity Proofs & Sybil Resistance
	Proving ownership of Web2 accounts

